• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Computer Science 6 CS6
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Deutsch
  • Imprint
  • Privacy
  • Accessibility
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Friedrich-Alexander-Universität Chair of Computer Science 6 CS6
Navigation Navigation close
  • Chair
    • About us
    • Staff
    • Contact
    Chair main page
  • Research
    • Evolutionary Information Systems
      • Sprechaktbasiertes Fallmanagement
      • Open and Collaborative Query-Driven Analytics
      • Processing Heterogeneous Assets and Resources to discover Ontologies and Semantics
      • Schema Inference and Machine Learning
    • Data Quality
      • DQ-Step – Verbesserung der Datenqualität bei AREVA NP / Abteilung NEM-G
      • Data quality and innovative capability of medical products
    • Data Integration
      • DQ-Step – Verbesserung der Datenqualität bei AREVA NP / Abteilung NEM-G
      • Open and Collaborative Query-Driven Analytics
      • Processing Heterogeneous Assets and Resources to discover Ontologies and Semantics
      • Schema Inference and Machine Learning
    • Process Management
      • Sprechaktbasiertes Fallmanagement
    • Database Systems
      • REAPER: A Framework for Materializing and Reusing Deep-Learning Models
      • Data Stream Application Manager
      • Know Your Queries!
      • Assessment of Data Management Systems
      • Query Optimisation and Near-Data Processing on Reconfigurable SoCs for Big Data Analysis
      • Query Optimisation and Near-Data Processing on Reconfigurable SoCs for Big Data Analysis (Phase II)
      • Schema Inference and Machine Learning
      • Architecture of Non-Multiple Autoencoders for Non-Lossy Information Agglomeration (working title, preliminary)
    • Datastream Systems
      • Data Stream Application Manager
      • Cross-system Optimization of Data-stream Queries
    • Data Management in the Digital Humanities
      • Franken in historischen Reiseberichten
      • Campusnetzwerk Digitale Geistes- und Sozialwissenschaften
    • Modern Database Systems
    • Finished Research Projects
    • Publications
    Research main page
  • Teaching
    • Study recommendations
    • Courses
    • Curriculum
    • Supervised theses
    • Exam information
    Teaching main page

Chair of Computer Science 6

Data Management

In page navigation: Research
  • Finished Research Projects
  • Publications
  • Evolutionary Information Systems
  • Data Quality
  • Data Integration
  • Process Management
  • Database Systems
    • REAPER: A Framework for Materializing and Reusing Deep-Learning Models
    • Data Stream Application Manager
    • Know Your Queries!
    • Assessment of Data Management Systems
    • Query Optimisation and Near-Data Processing on Reconfigurable SoCs for Big Data Analysis
    • Query Optimisation and Near-Data Processing on Reconfigurable SoCs for Big Data Analysis (Phase II)
    • Schema Inference and Machine Learning
    • Architecture of Non-Multiple Autoencoders for Non-Lossy Information Agglomeration (working title, preliminary)
  • Datastream Systems
  • Data Management in the Digital Humanities
  • Modern Database Systems

REAPER: A Framework for Materializing and Reusing Deep-Learning Models

REAPER: A Framework for Materializing and Reusing Deep-Learning Models

(Third Party Funds Group – Sub project)

Overall project: EFRE EIASY-Opt - Competence and Analysis Project for the "Data-driven Process and Production Optimization with the help of Data Mining and Big Data"
Project leader: Klaus Meyer-Wegener
Project members: Melanie Sigl
Start date: 01/01/2017
End date: 31/12/2020
Acronym: E|ASY-Opt INF6
Funding source: Sonstige EU-Programme (z. B. RFCS, DG Health, IMI, Artemis), Bayerische Staatsministerien
URL: https://www.faps.fau.de/curforsch/efre-easy-opt/

Abstract

Within the framework of the EFRE-E|ASY-Opt subproject, the potential of data mining methods in the area of manufacturing is being investigated. Especially the training of Deep-Learning models is a computationally intensive task, which may take hours or several days. The training time can be shortened considerably by using an already trained model, as long as the goal and source task are closely related. This connection is not yet fully understood.

The aim of this research project is to implement a system called REAPER (Reusable Neural Network Pattern Repository) to support data scientists in storing and reusing already trained deep learning models.

Publications

  • Sigl M.:
    Don't Fear the REAPER: A Framework for Materializing and Reusing Deep-Learning Models
    International Conference on Data Engineering (Macau SAR, China, 08/04/2019 - 11/04/2019)
    DOI: 10.1109/ICDE.2019.00246
    BibTeX: Download

People

Project Heads

Melanie Sigl

Melanie Bianca Sigl, M. Sc.

  • Email: melanie.sigl@fau.de
  • Website: https://www6.cs.fau.de/lehrstuhl/personen/melanie-sigl/
More › Details for Melanie Bianca Sigl

Klaus Meyer-Wegener

Prof. i. R. Dr. Klaus Meyer-Wegener

Martensstraße 3
91058 Erlangen
  • Phone number: +49 9131 85-27892
  • Email: klaus.meyer-wegener@fau.de
  • Website: https://www.cs6.tf.fau.de/person/klaus-meyer-wegener/
More › Details for Klaus Meyer-Wegener

Further Participants

Sophie Russ

Chair of Computer Science 6 (Data Management)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Martensstraße 3
91058 Erlangen
Germany
  • Contact
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up