• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Chair of Computer Science 6 CS6
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Suche öffnen
  • Deutsch
  • Imprint
  • Privacy
  • Accessibility
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Informatik
Friedrich-Alexander-Universität Chair of Computer Science 6 CS6
Navigation Navigation close
  • Chair
    • About us
    • Staff
    • Contact
    Chair main page
  • Research
    • Evolutionary Information Systems
      • Sprechaktbasiertes Fallmanagement
      • Open and Collaborative Query-Driven Analytics
      • Processing Heterogeneous Assets and Resources to discover Ontologies and Semantics
      • Schema Inference and Machine Learning
    • Data Quality
      • DQ-Step – Verbesserung der Datenqualität bei AREVA NP / Abteilung NEM-G
      • Data quality and innovative capability of medical products
    • Data Integration
      • DQ-Step – Verbesserung der Datenqualität bei AREVA NP / Abteilung NEM-G
      • Open and Collaborative Query-Driven Analytics
      • Processing Heterogeneous Assets and Resources to discover Ontologies and Semantics
      • Schema Inference and Machine Learning
    • Process Management
      • Sprechaktbasiertes Fallmanagement
    • Database Systems
      • REAPER: A Framework for Materializing and Reusing Deep-Learning Models
      • Data Stream Application Manager
      • Know Your Queries!
      • Assessment of Data Management Systems
      • Query Optimisation and Near-Data Processing on Reconfigurable SoCs for Big Data Analysis
      • Query Optimisation and Near-Data Processing on Reconfigurable SoCs for Big Data Analysis (Phase II)
      • Schema Inference and Machine Learning
      • Architecture of Non-Multiple Autoencoders for Non-Lossy Information Agglomeration (working title, preliminary)
    • Datastream Systems
      • Data Stream Application Manager
      • Cross-system Optimization of Data-stream Queries
    • Data Management in the Digital Humanities
      • Franken in historischen Reiseberichten
      • Campusnetzwerk Digitale Geistes- und Sozialwissenschaften
    • Modern Database Systems
    • Finished Research Projects
    • Publications
    Research main page
  • Teaching
    • Study recommendations
    • Courses
    • Curriculum
    • Supervised theses
    • Exam information
    Teaching main page

Chair of Computer Science 6

Data Management

In page navigation: Research
  • Finished Research Projects
  • Publications
  • Evolutionary Information Systems
    • Sprechaktbasiertes Fallmanagement
    • Open and Collaborative Query-Driven Analytics
    • Processing Heterogeneous Assets and Resources to discover Ontologies and Semantics
    • Schema Inference and Machine Learning
  • Data Quality
  • Data Integration
  • Process Management
  • Database Systems
  • Datastream Systems
  • Data Management in the Digital Humanities
  • Modern Database Systems

Schema Inference and Machine Learning

Schema Inference and Machine Learning

(Own Funds)

Overall project:
Project leader: Richard Lenz
Project members:
Start date: 01/08/2018
End date:
Acronym: SIML
Funding source:
URL:

Abstract

Within the framework of the project SIML (Schema Inference and Machine Learning), unstructured and semi-structured data are to be used to generate information from which a partial conceptual schema can be derived. Methods of topological data analysis (TDA) are used in combination with machine learning techniques to automate this as far as possible. In particular, we are interested in a stable, persistent form of natural data when using unsupervised learning methods. As a core concept, functional dependencies after data processing are to be investigated, with the help of which a suitable schema can then be defined. There are parallels and differences for time series and persistent data, which are also to be worked out.

The motivation of the work is to prove that schemata have a natural geometric structure in the form of a simplicial complex which can be investigated or made visible by topological methods.

Publications

  • Melodia L., Lenz R.:
    Persistent Homology as Stopping-Criterion for Voronoi Interpolation
    20th International Workshop on Combinatorial Image Analysis (Novi Sad, 16/07/2020 - 18/07/2020)
    In: Tibor Lukić, Reneta P. Barneva, Valentin E. Brimkov, Lidija Čomić, Nataša Sladoje (ed.): Proceedings of the 20th International Workshop on Combinatorial Image Analysis, Berlin: 2020
    DOI: 10.1007/978-3-030-51002-2
    URL: https://link.springer.com/book/10.1007/978-3-030-51002-2
    BibTeX: Download
  • Melodia L., Lenz R.:
    Estimate of the Neural Network Dimension Using Algebraic Topology and Lie Theory
    Image Mining. Theory and Applications VII (Mailand, 10/01/2021 - 11/01/2021)
    In: Alberto Del Bimbo, Rita Cucchiara, Stan Sciaroff, Giovanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair Escalante, Roberto Vezzani (ed.): Pattern Recognition and Information Forensics, Schweiz: 2021
    DOI: 10.1007/978-3-030-68821-9_2
    URL: https://www.springer.com/gp/book/9783030688202
    BibTeX: Download
  • Melodia L., Lenz R.:
    Homological Time Series Analysis of Sensor Signals from Power Plants
    Machine Learning for Irregular Time Series (Bilbao, 13/09/2021 - 13/09/2021)
    In: Springer (ed.): Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Cham: 2022
    DOI: 10.1007/978-3-030-93736-2\_22
    URL: https://link.springer.com/book/10.1007/978-3-030-93736-2
    BibTeX: Download

Chair of Computer Science 6 (Data Management)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Martensstraße 3
91058 Erlangen
Germany
  • Contact
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up